4.6 Article

Discrete-time optimal adaptive RBFNN control for robot manipulators with uncertain dynamics

期刊

NEUROCOMPUTING
卷 234, 期 -, 页码 107-115

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2016.12.048

关键词

Discrete-time system; Neural networks; Robot manipulator; Adaptive control; Dynamics uncertainties

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/L026856/2]
  2. Engineering and Physical Sciences Research Council [EP/L026856/2, EP/L026856/1] Funding Source: researchfish
  3. EPSRC [EP/L026856/2, EP/L026856/1] Funding Source: UKRI

向作者/读者索取更多资源

In this paper, a novel optimal adaptive radial basis function neural network (RBFNN) control has been investigated for a class of multiple-input-multiple-output (MIMO) nonlinear robot manipulators with uncertain dynamics in discrete time. To facilitate digital implementations of the robot controller, a robot model in discrete time has been employed. A high order uncertain robot model is able to be transformed to a predictor form, and a feedback control system has been then developed without noncausal problem in discrete time. The controller has been designed by an adaptive neural network (NN) based on the feedback system. The adaptive RBFNN robot control system has been investigated by a critic RBFNN and an actor RBFNN to approximate a desired control and a strategic utility function, respectively. The rigorous Lyapunov analysis is used to establish uniformly ultimate boundedness (UUB) of closed-loop signals, and the high-quality dynamic performance against uncertainties and disturbances is obtained by appropriately selecting the controller parameters. Simulation studies validate that the proposed control scheme has performed better than other available methods currently, for robot manipulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据