4.7 Article

Abnormal striatal plasticity in a DYT11/SGCE myoclonus dystonia mouse model is reversed by adenosine A2A receptor inhibition

期刊

NEUROBIOLOGY OF DISEASE
卷 108, 期 -, 页码 128-139

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2017.08.007

关键词

Dystonia; Sarcoglycan; Striatum; Adenosine 2A receptor; Plasticity

资金

  1. Foundation for Dystonia Research (FDR)
  2. Dystonia Medical Research Foundation (DMRF)

向作者/读者索取更多资源

Striatal dysfunction is implicated in many movement disorders. However, the precise nature of defects often remains uncharacterized, which hinders therapy development. Here we examined striatal function in a mouse model of the incurable movement disorder, myoclonus dystonia, caused by SGCE mutations. Using RNAseq we found surprisingly normal gene expression, including normal levels of neuronal subclass markers to strongly suggest that striatal microcircuitry is spared by the disease insult. We then functionally characterized Sgce mutant medium spiny projection neurons (MSNs) and cholinergic interneurons (ChIs). This revealed normal intrinsic electrophysiological properties and normal responses to basic excitatory and inhibitory neurotransmission. Nevertheless, high-frequency stimulation in Sgce mutants failed to induce normal long-term depression (LTD) at corticostriatal glutamatergic synapses. We also found that pharmacological manipulation of MSNs by inhibiting adenosine 2A receptors (A(2A)R) restores LTD, again pointing to structurally intact striatal circuitry. The fact that Sgce loss specifically inhibits LTD implicates this neurophysiological defect in myoclonus dystonia, and emphasizes that neurophysiological changes can occur in the absence of broad striatal dysfunction. Further, the positive effect of A2AR antagonists indicates that this drug class be tested in DYT11/SGCE dystonia. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据