4.7 Article

Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation

期刊

PHYSICAL REVIEW D
卷 98, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.98.083027

关键词

-

资金

  1. I-CORE program of the Planning and Budgeting Committee [1937/12]
  2. Israel Science Foundation [1507/16]

向作者/读者索取更多资源

Bosonic ultralight dark matter (ULDM) would form cored density distributions at the center of galaxies. These cores, seen in numerical simulations, admit analytic description as the lowest energy bound state solution (soliton) of the Schroedinger-Poisson equations. Numerical simulations of ULDM galactic halos find empirical scaling relations between the mass of the large-scale host halo and the mass of the central soliton. We discuss how the simulation results of different groups can be understood in terms of the basic properties of the soliton. Importantly, simulations imply that the energy per unit mass in the soliton and in the virialized host halo should be approximately equal. This relation lends itself to observational tests because it predicts that the peak circular velocity, measured for the host halo in the outskirts of the galaxy, should approximately repeat itself in the central region. Contrasting this prediction with the measured rotation curves of well-resolved nearby galaxies, we show that ULDM in the mass range m similar to (10(-22) divided by 10(-21)) eV, which has been invoked as a possible solution to the small-scale puzzles of Lambda CDM, is in tension with the data. We suggest that a dedicated analysis of the Milky Way inner gravitational potential could probe ULDM up to m less than or similar to 10(-19) eV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据