3.8 Proceedings Paper

Learning Convolutional Networks for Content-weighted Image Compression

出版社

IEEE
DOI: 10.1109/CVPR.2018.00339

关键词

-

资金

  1. Hong Kong RGC General Research Fund [PolyU 152212/14E]
  2. Major State Basic Research Development Program of China (973 Program) [2015CB351804]
  3. Huawei HIRP fund [2017050001C2]
  4. NSFC Fund [61671182]

向作者/读者索取更多资源

Lossy image compression is generally formulated as a joint rate-distortion optimization problem to learn encoder, quantizer, and decoder. Due to the non-differentiable quantizer and discrete entropy estimation, it is very challenging to develop a convolutional network (CNN)-based image compression system. In this paper, motivated by that the local information content is spatially variant in an image, we suggest that: (i) the bit rate of the different parts of the image is adapted to local content, and (ii) the content aware bit rate is allocated under the guidance of a content weighted importance map. The sum of the importance map can thus serve as a continuous alternative of discrete entropy estimation to control compression rate. The binarizer is adopted to quantize the output of encoder and a proxy function is introduced for approximating binary operation in backward propagation to make it differentiable. The encoder, decoder, binarizer and importance map can be jointly optimized in an end-to-end manner. And a convolutional entropy encoder is further presented for lossless compression of importance map and binary codes. In low bit rate image compression, experiments show that our system significantly outperforms JPEG and JPEG 2000 by structural similarity (SSIM) index, and can produce the much better visual result with sharp edges, rich textures, and fewer artifacts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据