4.6 Article

Synthesis of Superparamagnetic Cu0.4Zn0.6Fe2O4-Implanted Bi2S3-Capped TiO2 2D and 3D Nanostructures for Visible Light Photocatalysis

期刊

ACS OMEGA
卷 3, 期 12, 页码 18958-18966

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b01877

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi [21(0887)/12/EMR-II]
  2. CSIR

向作者/读者索取更多资源

Sharp narrow nanopetal-like and wrinkled nanoball-like cubic Cu0.4Zn0.6Fe2O4-implanted orthorhombic Bi2S3-capped anatase TiO2 heterostructures have been synthesized by a two-step hydrothermal process in acidic and basic environments. They have been characterized by high-resolution scanning and transmission electron microscopies, energy-dispersive X-ray spectroscopy, selected area electron and powder X-ray diffractometries, vibrating sample magnetometry, UV-visible diffuse reflectance and photoluminescence spectroscopies, and nitrogen adsorption-desorption analysis. Both the nanostructured composites are superparamagnetic. While the nanocomposite synthesized in acidic environment absorbs in the entire visible and UV spectral regions, the absorption edge of nanocomposite obtained in basic environment narrowly misses the red end of the visible spectrum. The emission spectra of both the nanomaterials are strikingly similar, indicating similar crystal defects in anatase TiO2 lattice of both the nanocomposites. Although both the nanocomposites degrade dye under visible light, the photocatalytic activity of the sample obtained in acidic environment is superior to that prepared in basic condition. The enhanced photocatalytic activity of the nanocomposite synthesized in acidic environment is rationalized in terms of nanostructure, surface area, and optical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据