3.8 Proceedings Paper

Trajectory Optimization of Levitated Particles in Mid-air Ultrasonic Standing Wave Levitators

出版社

IEEE

关键词

-

资金

  1. Japan Student Services Organization (JASSO) Student Exchange Support Program
  2. IEEE UFFC

向作者/读者索取更多资源

Ultrasonic standing wave levitators have a broad range of potential applications as a non-contact transportation method in pharmaceutical, chemical, or biological procedures. In these devices, the particle is held in mid-air and moved to the target position, either by mechanically translating the levitator or by refocusing the standing wave with a phased-array. However, most acoustic levitators operate in open-loop mode and do not have feedback on the position of the particle. Without a control system, the path that the levitated particle follows differs significantly from the desired path. Tracking in three dimensions millimeter-sized particles in mid-air at the required frame rates is technically challenging and costly. In response, we explore offline optimization of the trajectory as a solution. The aim of this optimization is to increase the accuracy with which the desired path is followed by the levitated particle, benefitting contactless transportation and manipulation applications. This method could also be applied to display technologies in which a travelling particle outlines different shapes to convey information.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据