4.3 Article

Soil organic carbon sequestration as influenced by long-term manuring and fertilization in the rice-wheat cropping system

期刊

CARBON MANAGEMENT
卷 9, 期 6, 页码 619-629

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17583004.2018.1526625

关键词

Crop biomass carbon; soil organic carbon; carbon sequestration rate; rice-wheat cropping system

资金

  1. National Key Research and Development Program of China [2018YFD0200500]
  2. Special Fund for Agro-scientific Research in the Public Interest of China [201203030]
  3. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [2012-940]
  4. Scientific and Technological Key Achievements Cultivation Project of Hubei Academy of Agricultural Sciences [2017CGPY01]

向作者/读者索取更多资源

Fertilization is a feasible approach to increase the soil organic carbon. To investigate the effect of fertilization on crop biomass carbon, dynamics of soil organic carbon and soil carbon sequestration rate in the (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system under the middle reach of the Yangtze River, central China, a thirty-three years (1981 - 2013) long-term fertilizer experiment was conducted with nine treatments, including no amendment addition treatment (control), nitrogen (N), phosphorus (P), potassium (K) fertilizer treatments (N, NP, NPK), manure (M) and manure combined with chemical fertilizer treatments (MN, MNP, MNPK, hMNPK). The results indicated that average crop biomass carbon was increased by 39.9 - 77.2% compared to unfertilized control (4.43 t ha(-1) yr(-1)) due to fertilizer application, the highest crop biomass carbon was 7.85 t ha(-1) yr(-1) in the hMNPK treatment and the lowest crop biomass carbon was 5.21 t ha(-1) yr(-1) in the N alone treatment. The annual total organic carbon input were 4.14 t ha(-1) yr(-1) in the M treatment and 5.80 t ha(-1) yr(-1) in the hMNPK treatment, which was 1.95 - 2.74 times of those in the NPK treatments (2.12 t ha(-1) yr(-1)). Total organic carbon input of soil were increased by 10.2 - 23.3 kg C ha(-1) yr(-1), and increment rate in the appended manure treatments were much higher than those in the control and inorganic fertilizer treatments. Soil organic carbon retention in the topsoil (0 - 20 cm) decreased by 0.11 - 0.14 t ha(-1) yr(-1) in the control, N and NP treatments; nevertheless, soil organic carbon sequestration rates varied from 0.03 to 0.20 t ha(-1) yr(-1) in the NPK and appended organic manure treatments. These results demonstrate that organic manure use or integrated organic manure with chemical fertilizer application can be important strategies for increasing soil organic carbon sequestration and maintaining soil quality in the rice-wheat cropping system of China.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据