4.5 Article

Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: potential involvement of anti-oxidative mechanisms

期刊

出版社

SPRINGER
DOI: 10.1007/s00210-017-1449-1

关键词

Oxidative stress; Inflammation; PGC-1 alpha; SIRT-1; NRF-1

资金

  1. Rural Development Administration, Republic of Korea [PJ01199003]
  2. National Research Foundation of Korea - Korean Government [NRF-2014S1A5B5A07042382]
  3. National Research Foundation of Korea [2014S1A5B5A07042382] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The molecular study of muscles is needed to overcome chronic inflammation and maintenance of muscles in the human body. Schisandrin C is a pharmacological compound derived from the fruit of Schisandra chinensis and has many characteristics including anti-inflammation, anti-tumor, and anti-oxidation. However, the cellular and molecular mechanisms of Schisandrin C are still not well understood especially in skeletal muscle. Therefore, the present study was evaluated whether the properties of Schisandrin C in C2C12 skeletal muscle cells involved maintenance of cellular homeostasis and protection against oxidative damage. Differentiated C2C12 cells were exposed to H2O2 to induce oxidative stress. The characteristics of anti-oxidants, anti-inflammation, autophagy, and mitochondrial biogenesis were tested by Western blotting. Confocal microscopy was also used to observe mitochondrial activity. Schisandrin C inhibited inflammatory molecules with enhancing anti-oxidant activity and reducing reactive oxygen species (ROS) even in the presence of H2O2. The dual anti-inflammation and anti-oxidant roles of Schisandrin C regulated the translocation of nuclear factor kappa B (NF-kappa B) and nuclear factor erythroid 2-related factor-2 (Nrf-2) to nucleus followed by inhibition of the mitogen-activated protein kinase (MAPK) pathway. Schisandrin C promoted the expression of autophagy and mitochondrial biogenesis molecules. Furthermore, the effect of Schisandrin C increased the mitochondrial activity against oxidative stress. Consequently, the action of Schisandrin C enhanced the regulation of autophagy and mitochondrial biogenesis with potential involvement of anti-oxidative mechanisms including the MAPKs/Nrf-2/heme oxygenase-1 signaling pathway in C2C12 skeletal muscle cells exposed to oxidative stress. Therefore, Schisandrin C may be considered as a beneficial compound for several muscle inflammations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据