4.7 Article

Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity

期刊

NATURE PROTOCOLS
卷 12, 期 10, 页码 2189-2214

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nprot.2017.091

关键词

-

资金

  1. Polish Ministry of Science and Higher Education [IP2012 040172]
  2. Polish National Science Centre [2014/14/M/ST5/00619]
  3. US National Institutes of Health [R01GM099040]
  4. European Union's Horizon research and innovation program under Marie Sklodowska-Curie grant [661187]
  5. Foundation for Polish Science

向作者/读者索取更多资源

Many biologically and chemically based approaches have been developed to design highly active and selective protease substrates and probes. It is, however, difficult to find substrate sequences that are truly selective for any given protease, as different proteases can demonstrate a great deal of overlap in substrate specificities. In some cases, better enzyme selectivity can be achieved using peptide libraries containing unnatural amino acids such as the hybrid combinatorial substrate library (HyCoSuL), which uses both natural and unnatural amino acids. HyCoSuL is a combinatorial library of tetrapeptides containing amino acid mixtures at the P4-P2 positions, a fixed amino acid at the P1 position, and an ACCACCACC (7-amino-4-carbamoylmethylcoumarin) fluorescent tag occupying the P1' position. Once the peptide is recognized and cleaved by a protease, the ACCACCACC is released and produces a readable fluorescence signal. Here, we describe the synthesis and screening of HyCoSuL for human caspases and legumain. We also discuss possible modifications and adaptations of this approach that make it a useful tool for developing highly active and selective reagents for a wide variety of proteolytic enzymes. The protocol can be divided into three major parts: (i) solid-phase synthesis of the fluorescence-labeled HyCoSuL, (ii) screening of protease P4-P2 preferences, and (iii) synthesis of the optimized activity probes equipped with an AOMK (acyloxymethyl ketone) reactive group and a biotin label for easy detection. Beginning with the library design, the entire protocol can be completed in 4-8 weeks (HyCoSuL synthesis: 3-5 weeks; HyCoSuL screening per enzyme: 4-8 d; and activity-based probe synthesis: 1-2 weeks).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据