4.8 Article

Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene

期刊

NATURE PHYSICS
卷 14, 期 1, 页码 25-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS4278

关键词

-

资金

  1. French National Research Agency through 'Investissements d'Avenir' program Labex NanoSaclay [ANR-10-LABX-0035]
  2. EU Work Programme [604391, 696656]
  3. Marie-Curie-ITN [607904-SPINOGRAPH]
  4. EPSRC [EP/K016636/1, EP/P005152/1]
  5. Institut Universitaire de France
  6. Engineering and Physical Sciences Research Council [EP/K016636/1] Funding Source: researchfish
  7. EPSRC [EP/K016636/1, EP/P005152/1] Funding Source: UKRI

向作者/读者索取更多资源

Superconductivity can be induced in a normal material via the 'leakage' of superconducting pairs of charge carriers from an adjacent superconductor. This so-called proximity effect is markedly influenced by graphene's unique electronic structure, both in fundamental and technologically relevant ways. These include an unconventional form(1,2) of the 'leakage' mechanism-the Andreev reflection(3)-and the potential of supercurrent modulation through electrical gating(4). Despite the interest of high-temperature superconductors in that context(5,6), realizations have been exclusively based on low-temperature ones. Here we demonstrate a gate-tunable, high-temperature superconducting proximity effect in graphene. Notably, gating effects result from the perfect transmission of superconducting pairs across an energy barrier-a form of Klein tunnelling(7,8), up to now observed only for non-superconducting carriers(9,10)-and quantum interferences controlled by graphene doping. Interestingly, we find that this type of interference becomes dominant without the need of ultraclean graphene, in stark contrast to the case of low-temperature superconductors(11). These results pave the way to a new class of tunable, high-temperature Josephson devices based on large-scale graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据