4.7 Article

Motivational neural circuits underlying reinforcement learning

期刊

NATURE NEUROSCIENCE
卷 20, 期 4, 页码 505-512

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn.4506

关键词

-

向作者/读者索取更多资源

Reinforcement learning (RL) is the behavioral process of learning the values of actions and objects. Most models of RL assume that the dopaminergic prediction error signal drives plasticity in frontal-striatal circuits. The striatum then encodes value representations that drive decision processes. However, the amygdala has also been shown to play an important role in forming Pavlovian stimulus-outcome associations. These Pavlovian associations can drive motivated behavior via the amygdala projections to the ventral striatum or the ventral tegmental area. The amygdala may, therefore, play a central role in RL. Here we compare the contributions of the amygdala and the striatum to RL and show that both the amygdala and striatum learn and represent expected values in RL tasks. Furthermore, value representations in the striatum may be inherited, to some extent, from the amygdala. The striatum may, therefore, play less of a primary role in learning stimulus-outcome associations in RL than previously suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据