4.8 Article

A spatially localized architecture for fast and modular DNA computing

期刊

NATURE NANOTECHNOLOGY
卷 12, 期 9, 页码 920-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2017.127

关键词

-

资金

  1. National Science Foundation [CCF-1409831, CCF-1317653, IIS-1212940]
  2. Office of Naval Research [N00014-13-1-0880]
  3. Microsoft Research Ltd.
  4. Direct For Computer & Info Scie & Enginr
  5. Division of Computing and Communication Foundations [1409831, 1317694] Funding Source: National Science Foundation
  6. Division of Computing and Communication Foundations
  7. Direct For Computer & Info Scie & Enginr [1317653] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cells use spatial constraints to control and accelerate the flow of information in enzyme cascades and signalling networks. Synthetic silicon-based circuitry similarly relies on spatial constraints to process information. Here, we show that spatial organization can be a similarly powerful design principle for overcoming limitations of speed and modularity in engineered molecular circuits. We create logic gates and signal transmission lines by spatially arranging reactive DNA hairpins on a DNA origami. Signal propagation is demonstrated across transmission lines of different lengths and orientations and logic gates are modularly combined into circuits that establish the universality of our approach. Because reactions preferentially occur between neighbours, identical DNA hairpins can be reused across circuits. Co-localization of circuit elements decreases computation time from hours to minutes compared to circuits with diffusible components. Detailed computational models enable predictive circuit design. We anticipate our approach will motivate using spatial constraints for future molecular control circuit designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据