4.8 Article

Steep-slope hysteresis-free negative capacitance MoS2 transistors

期刊

NATURE NANOTECHNOLOGY
卷 13, 期 1, 页码 24-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41565-017-0010-1

关键词

-

资金

  1. Air Force Office of Scientific Research (AFOSR)/National Science Foundation (NSF) Two-Dimensional Atomic-layer Research and Engineering (2DARE) programme
  2. Army Research Office (ARO)
  3. Semiconductor Research Corporation (SRC)
  4. Emerging Frontiers & Multidisciplinary Activities
  5. Directorate For Engineering [1433459] Funding Source: National Science Foundation

向作者/读者索取更多资源

The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec(-1) at room temperature and therefore precludes lowering of the supply voltage and overall power consumption(1,2). Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier(3). Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel(4-12). Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 mu A mu m(-1) and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据