4.8 Article

Structural phase transition in monolayer MoTe2 driven by electrostatic doping

期刊

NATURE
卷 550, 期 7677, 页码 487-+

出版社

NATURE RESEARCH
DOI: 10.1038/nature24043

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05CH11231]
  2. National Science Foundation (NSF) [EFMA-154274]
  3. Army Research Office [W911NF-15-1-0570]
  4. Office of Naval Research [N00014-15-1-2697]
  5. NSF [DMR-1455050, EECS-1436626]
  6. Stanford Graduate Fellowship programme
  7. Division Of Materials Research
  8. Direct For Mathematical & Physical Scien [1455050] Funding Source: National Science Foundation

向作者/读者索取更多资源

Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties(1-3). Exploring the physics of transitions between these different structural phases in two dimensions(4) may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means(5,6); purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized(7,8). Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据