4.1 Article

Numerical Study of Effects of Complex Topography on Surface-Piercing Wave-Body Interactions

期刊

JOURNAL OF MARINE SCIENCE AND APPLICATION
卷 17, 期 4, 页码 550-563

出版社

HARBIN ENGINEERING UNIV
DOI: 10.1007/s11804-018-00057-3

关键词

Wave-body interactions; Complex topography; Wave loads; Roll motion; OpenFOAM

资金

  1. National Key Research and Development Program of China [2016YFB0200902]
  2. Program for Guangdong Introducing Innovative and Entrepreneurial Teams [2016ZT06D211]

向作者/读者索取更多资源

In this paper, wave-body interactions under the effects of complex topography are investigated numerically by a two-phase incompressible Reynolds-Averaged Navier-Stokes (RANS) solver in OpenFOAM. A submerged bottom-standing structure is distributed below the floating body, and the effects of the water depth and top width of the submerged structure on wave-body interactions are studied. The results show that the submerged structure can affect wave loads and roll motion. The vertical force can be amplified on the fixed body when the water depth of the submerged structure is smaller than half of the water depth of the body. The top width significantly affects the vertical force when the top width is smaller than the incident wave length and larger than the body width. For the free-rolling body, roll amplitude can be increased when the ratio of the incident wave length to the water depth of the submerged structure is large enough. On the resonance condition, roll amplitude is slightly reduced by the submerged structure. The effects of the top width on roll amplitude are remarkable when special conditions are fulfilled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据