4.8 Article

Higher-order interactions stabilize dynamics in competitive network models

期刊

NATURE
卷 548, 期 7666, 页码 210-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature23273

关键词

-

资金

  1. Human Frontier Science Program
  2. NSF [DEB-1148867]
  3. US Department of Education [P200A150101]
  4. Direct For Biological Sciences
  5. Division Of Environmental Biology [1148867] Funding Source: National Science Foundation

向作者/读者索取更多资源

Ecologists have long sought a way to explain how the remarkable biodiversity observed in nature is maintained. On the one hand, simple models of interacting competitors cannot produce the stable persistence of very large ecological communities(1-5). On the other hand, neutral models(6-9), in which species do not interact and diversity is maintained by immigration and speciation, yield unrealistically small fluctuations in population abundance(10), and a strong positive correlation between a species' abundance and its age(11), contrary to empirical evidence. Models allowing for the robust persistence of large communities of interacting competitors are lacking. Here we show that very diverse communities could persist thanks to the stabilizing role of higher-order interactions(12,13), in which the presence of a species influences the interaction between other species. Although higher-order interactions have been studied for decades(14-16), their role in shaping ecological communities is still unclear(5). The inclusion of higher-order interactions in competitive network models stabilizes dynamics, making species coexistence robust to the perturbation of both population abundance and parameter values. We show that higher-order interactions have strong effects in models of closed ecological communities, as well as of open communities in which new species are constantly introduced. In our framework, higher-order interactions are completely defined by pairwise interactions, facilitating empirical parameterization and validation of our models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据