3.8 Proceedings Paper

Fatigue assessment of welded joints in API 579-1/ASME FFS-1 2016-existing methods and new developments

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.proeng.2018.02.049

关键词

fatigue; welded joints; structural stress; structural strain; master s-n curve; mesh-insensitive; bree diagram; shakedown; ratcheting; fitness-for-service; API 579-1/ASME FFS-1; assessment levels

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MEST) through GCRC-SOP at University of Michigan under Project 2-1: Reliability and Strength Assessment of Core Parts and Material System
  2. Traction Power National Key Laboratory Open Competition Grant [TPL 1605]

向作者/读者索取更多资源

The 3rd Edition of API 579-1/ASME FFS-1 2016 Fitness-For-Service includes a new Part 14 dedicated to fatigue assessment. An important section in this part covers the fatigue assessment of welded joints. In this paper, an overview of the fatigue methods for welded joints is provided and extensions are recommended. First, an overview is given of the classical fatigue method used in the ASME B&PV Code based on smooth bar fatigue curves in conjunction with a fatigue strength reduction factor. In addition, the mesh insensitive structural stress method is outlined using an equivalent stress parameter based on fracture mechanics considerations in conjunction with a master S-N curve based on the analysis of over 2000 high and low cycle S-N test data. The resulting master S-N curve approach is applicable to high cycle fatigue and low cycle fatigue if a Neuber correction is introduced. In this paper, a new structural strain method is presented to extend the early structural stress based master S-N curve method to the low cycle fatigue regime in which plastic deformations can be significant while an elastic core is present. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure can be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. The earlier mesh-insensitive structural stress based master S-N curve method can now be viewed as an application of the structural strain method in the high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. Thus, both low cycle and high cycle fatigue behavior can now be treated in a unified manner. In the low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy a linear through-thickness deformation gradient assumption, material nonlinear behavior, and equilibrium conditions. A PVRC Joint Industry Project is currently sponsoring work on the structural strain method that will lead to its incorporation in the next edition of API 579-1/ASME FFS-1. (C) 2018 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据