3.8 Proceedings Paper

Visual analysis of void and reinforcement characteristics in X-ray computed tomography dataset series of fiber-reinforced polymers

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1757-899X/406/1/012014

关键词

-

资金

  1. project Interpretation and evaluation of defects in complex CFK structures based on 3D-CT data and structural simulation (DigiCT-Sim
  2. FFG proj) - federal government of Upper Austria [862015]
  3. FFG
  4. FFG Bridge Early Stage project: Advanced multimodal data analysis and visualization of composites based on grating interferometer micro-CT data (ADAM) [851249]

向作者/读者索取更多资源

Fiber-reinforced polymers (FRPs) are of great importance in various industries because of their superior properties as compared to conventional materials, their versatile processing, and their wide application possibilities. To fulfil the high-quality standards in its respective applications, industrial 3D X-ray computed tomography (XCT) is increasingly used. It enables an accurate, non-destructive characterization of material features such as inclusions, voids, fibers, or other reinforcements, which is of core importance for material and component design. In this work we present FeatureAnalyzer, a generalization of the previously introduced PorosityAnalyzer tool, which allows to analyze dataset series as generated for exploring the parameter space of image processing workflows (including pre-filtering, segmentation, post-processing or quantification) applied to XCT datasets of fiber-reinforced polymers. With a scatter plot matrix (SPLOM), the characteristics of the features of interest may be examined in more detail regarding the used input and output parameters. Individual results may be selected in the SPLOM and analyzed using 2D slice views and 3D renderings. For this work, three different samples (sample #1 -#3) were scanned by means of XCT and were evaluated by using FeatureAnalyzer. The samples #1 and #2 have a porosity value of approximately 1.7 vol. %. By using the FeatureAnalyzer in combination with SPLOM, the threshold parameters could be analyzed before the over-segmentation of voids occurs. Additional evaluations by parallel coordinates clearly show, that sample #2 has a higher number of spherical voids in the center of the specimen compared to sample #1. By evaluating the resin content of sample #3, the individual layer thickness could be measured. The source code of the tool is available on Github: https://github.com/3dct/open_iA/

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据