4.6 Article

Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines

期刊

NANOTOXICOLOGY
卷 11, 期 2, 页码 223-235

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17435390.2017.1287313

关键词

Nanoparticles; silica; cytotoxicity; cytokines; pathway analysis

资金

  1. Chemicals Management Plan
  2. Nanotechnology Section funds (Health Canada)

向作者/读者索取更多资源

The likelihood of environmental and health impacts of silicon dioxide nanoparticles (SiNPs) has risen, due to their increased use in products and applications. The biological potency of a set of similarly-sized amorphous SiNPs was investigated in a variety of cells to examine the influence of physico-chemical and biological factors on their toxicity. Cellular LDH and ATP, BrdU incorporation, resazurin reduction and cytokine release were measured in human epithelial A549, human THP-1 and mouse J774A.1 macrophage cells exposed for 24h to suspensions of 5-15, 10-20 and 12nm SiNPs and reference particles. The SiNPs were characterized in dry state and in suspension to determine their physico-chemical properties. The dose-response data were simplified into particle potency estimates to facilitate the comparison of multiple endpoints of biological effects in cells. Mouse macrophages were the most sensitive to SiNP exposures. Cytotoxicity of the individual cell lines was correlated while the cytokine responses differed, supported by cell type-specific differences in inflammation-associated pathways. SiNP (12nm), the most cytotoxic and inflammogenic nanoparticle had the highest surface acidity, dry-state agglomerate size, the lowest trace metal and organics content, the smallest surface area and agglomerate size in suspension. Particle surface acidity appeared to be the most significant determinant of the overall biological activity of this set of nanoparticles. Combined with the nanoparticle characterization, integration of the biological potency estimates enabled a comprehensive determination of the cellular reactivity of the SiNPs. The approach shows promise as a useful tool for first-tier screening of SiNP toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据