4.6 Article

Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

期刊

NANOTECHNOLOGY
卷 28, 期 27, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aa74a3

关键词

surface plasmons; pyramid structure; hot electrons; near-infrared photodetection

资金

  1. National Natural Science Foundation of China [61372030, 91333118, 51120125001, 61571124]
  2. National Basic Research Program of China [2013CB328803]
  3. National High Technology Research Development Program of China [2013AA013904, 2015AA016301]
  4. 111 Project [B07027]
  5. Fundamental Research Funds for the Central Universities and Graduate Innovation Program of Jiangsu Province [KYLX16_0214]

向作者/读者索取更多资源

SThe heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10(-5) A cm(-2). The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据