4.6 Article

Hydrothermal synthesis of stable metallic 1T phase WS2 nanosheets for thermoelectric application

期刊

NANOTECHNOLOGY
卷 29, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6528/aa9bfe

关键词

1T phase WS2 nanosheets; hydrothermal method; phase stability; TE properties

资金

  1. National Natural Science Foundation of China [51602306, 61601434]
  2. Venture & Innovation Support Program for Chongqing Overseas Returnees
  3. Ministry of Science & ICT (MSIT), Republic of Korea [IBS-R011-D1-2018-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Two-dimensional materials have gained great attention as a promising thermoelectric (TE) material due to their unique density of state with confined electrons and holes. Here, we synthesized 1T phase tungsten disulfide (WS2) nanosheets with high TE performance via the hydrothermal method. Flexible WS2 nanosheets restacked thin films were fabricated by employing the vacuum filtration technique. The measured electrical conductivity was 45 S cm(-1) with a Seebeck coefficient of + 30 mu V K-1 at room temperature, indicating a p-type characteristic. Furthermore, the TE performance could be further improved by thermal annealing treatment. It was found the electrical conductivity could be enhanced 2.7 times without sacrificing the Seebeck coefficient, resulting in the power factor of 9.40 mu W m(-1) K-2. Moreover, such 1T phase WS2 nanosheets possess high phase stability since the TE properties maintained constant at least half one year in the air atmosphere. Notably, other kinds of 1T phase transitional metal dichalcogenides (TMDCs) with excellent TE performance also could be imitated by using the procedure in this work. Finally, we believe a variety of materials based on 1T phase TMDCs nanosheets have great potential as candidate for future TE applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据