3.8 Proceedings Paper

Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/1085/4/042034

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

There has been considerable recent activity applying deep convolutional neural nets (CNNs) to data from particle physics experiments. Current approaches on ATLAS/CMS have largely focussed on a subset of the calorimeter, and for identifying objects or particular particle types. We explore approaches that use the entire calorimeter, combined with track information, for directly conducting physics analyses: i.e. classifying events as known-physics background or new-physics signals. We use an existing RPV-Supersymmetry analysis as a case study and explore CNNs on multi-channel, high-resolution sparse images: applied on GPU and multi-node CPU architectures (including Knights Landing (KNL) Xeon Phi nodes) on the Cori supercomputer at NERSC. We compare statistical performance of our approaches with selections on high-level physics variables from the current physics analyses, and shallow classifiers trained on those variables. We also compare time-to-solution performance of CPU (scaling to multiple KNL nodes) and GPU implementations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据