4.3 Article

Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

期刊

NANOSCALE RESEARCH LETTERS
卷 12, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1186/s11671-017-2307-2

关键词

InP/ZnS core/shell QDs; Light-emitting diodes; Heavy-metal-free; Environment-friendly; Green synthesis

资金

  1. Taipei Medical University [MOST 103-2113-M-003-003-MY3, MOST 106-2113-M-003-014-MY3, MOST 106-2119-M-003-002, MOST 105-2119-M-038-002-MY2, MOST 106-2622-E-038-001-CC2]
  2. AU Optronics Corporation [AUO-1507057]
  3. National Taiwan Normal University

向作者/读者索取更多资源

Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at similar to 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at similar to 5 V, the highest luminance (160 cd/m(2)) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据