4.8 Article

A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples

期刊

NANOSCALE
卷 9, 期 10, 页码 3496-3503

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr09928a

关键词

-

资金

  1. ARC DECRA [DE140101056]
  2. National Breast Cancer Foundation of Australia [CG-12-07]
  3. Australian Government Research Training Program Scholarships
  4. Australian Research Council [DE140101056] Funding Source: Australian Research Council

向作者/读者索取更多资源

Simple nucleic acid detection methods could facilitate the progress of disease diagnostics for clinical uses. An attractive strategy is label-free surface-enhanced Raman scattering (SERS) due to its capability of providing structural fingerprinting of analytes that are close to or on nanomaterial surfaces. However, current label-free SERS approaches for DNA/RNA biomarker detection are limited to short and synthetic nucleic acid targets and have not been fully realized in clinical samples due to two possible reasons: (i) low target copies in limited patient samples and (ii) poor capability in identifying specific biomarkers from complex samples. To resolve these limitations and enable label-free SERS for clinical applications, we herein present a novel strategy based on multiplex reverse transcription-recombinase polymerase amplification (RT-RPA) to enrich multiple RNA biomarkers, followed by label-free SERS with multivariate statistical analysis to directly detect, identify and distinguish between these long amplicons (similar to 200 bp). As a proof-of-concept clinical demonstration, we employed this strategy for non-invasive subtyping of prostate cancer (PCa). In a training cohort of 43 patient urinary samples, we achieved 93.0% specificity, 95.3% sensitivity, and 94.2% accuracy. We believe that our proposed assay could pave the way for simple and direct label-free SERS detection of multiple long nucleic acid sequences in patient samples, and thus facilitate rapid cancer molecular subtyping for personalized therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据