4.8 Article

Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers

期刊

NANOSCALE
卷 9, 期 41, 页码 15813-15824

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr04881e

关键词

-

资金

  1. Washington State University
  2. National Natural Science Foundation of China [21575047]

向作者/读者索取更多资源

In the conventional non-invasive cancer treatments, such as photodynamic therapy (PDT) and photothermal therapy (PTT), light irradiation is precisely focused on tumors to induce apoptosis via the generation of reactive oxygen species (ROS) or localized heating. However, overconsumption of oxygen and restricted diffusion distance of ROS limit the therapeutic effects on hypoxic tumors. Herein, we developed a platform for the rapid uptake of multifunctionalized Au@Pt nanoparticles (NPs) by mitochondria in cancer cells. The mesoporous Au@Pt nanoparticles were labeled with a cell-targeting ligand (folic acid), a mitochondria-targeting group (triphenylphosphine (TPP)), and a photosensitizer (Ce6). This led to significant improvement of the PDT efficacy due to an enhanced cellular uptake, an effective mitochondrial ROS burst, and a rapid intelligent release of oxygen. Moreover, Au@Pt NPs can convert laser radiation into heat, resulting in thermally induced cell damage. This nanosystem could be used as a dual-mode phototherapeutic agent for enhanced cancer therapy and molecular targets associated with disease progression. We achieved a mitochondria-targeted multifunctional therapy strategy (a combination of PDT and PTT) to substantially improve the therapeutic efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据