4.8 Article

A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water

期刊

NANOSCALE
卷 9, 期 13, 页码 4401-4408

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr09864a

关键词

-

资金

  1. Faculty of Engineering & Information Technologies, the University of Sydney, under the Faculty Research Cluster Program
  2. Australian Research Council [FT160100107]
  3. Australian Research Council [FT160100107] Funding Source: Australian Research Council

向作者/读者索取更多资源

Electrochemical splitting of water to produce oxygen (O-2) and hydrogen (H-2) through a cathodic hydrogen evolution reaction (HER) and an anodic oxygen evolution reaction (OER) is a promising green approach for sustainable energy supply. Here we demonstrated a porous nickel-copper phosphide (NiCuP) nano-foam as a bifunctional electrocatalyst for highly efficient total water splitting. Prepared from a bubble-templated electrodeposition method and subsequent low-temperature phosphidization, NiCuP has a hierarchical pore structure with a large electrochemical active surface area. To reach a high current density of 50 mA cm(-2), it requires merely 146 and 300 mV with small Tafel slopes of 47 and 49 mV dec(-1) for HER and OER, respectively. The total water splitting test using NiCuP as both the anode and cathode showed nearly 100% Faradic efficiency and surpassed the performances of electrode pairs using commercial Pt/C and IrO2 catalysts under our test conditions. The high activity of NiCuP can be attributed to (1) the conductive NiCu substrates, (2) a large electrochemically active surface area together with a combination of pores of different sizes, and (3) the formation of active Ni/Cu oxides/hydroxides while keeping a portion of more conductive Ni/Cu phosphides in the nano-foam. We expect the current catalyst to enable the manufacturing of affordable water splitting systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据