4.8 Review

Antibacterial mechanisms of graphene-based composite nanomaterials

期刊

NANOSCALE
卷 9, 期 3, 页码 994-1006

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr08733g

关键词

-

资金

  1. National Science Foundation [DMR-1409396]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1409396] Funding Source: National Science Foundation

向作者/读者索取更多资源

Pathogenic bacteria are gaining resistance to conventional antibiotics at an alarming rate due to overuse and rapid transfer of resistance genes between bacterial populations. As bacterial resistance to antibiotics causes millions of fatalities worldwide, it is of urgent importance to develop a new class of antibiotic materials with both broad-spectrum bactericidal activity and suitable biocompatibility. Graphene derivatives are rapidly emerging as an extremely promising class of antimicrobial materials due to their diverse bactericidal mechanisms and relatively low cytotoxicity towards mammalian cells. By combining graphene derivatives with currently utilized antibacterial metal and metal-oxide nanostructures, composite materials with exceptional bactericidal activity can be achieved. In this review, the antibacterial activities of graphene derivatives as well as their metal and metal-oxide composite nanostructures will be presented. The synthetic methodology for these various materials will be briefly mentioned, and emphasis will be placed on the evaluation of their mechanisms of action. This information will provide a valuable insight into the current understanding of the interactions governing the microbial toxicity of graphene-based composite nanostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据