4.8 Article

Addressing carrier extraction from optically-optimized nanopillar arrays for thin-film photovoltaics

期刊

NANOSCALE
卷 9, 期 40, 页码 15707-15716

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr05172g

关键词

-

向作者/读者索取更多资源

Decorating the top surface of silicon solar cells with nanopillar arrays of subwavelength periodicity is a promising path toward low-cost thin-film photovoltaics with enhanced solar radiation absorption due to the inherent light trapping capabilities of nanopillar arrays. Common practice and knowledge for the efficient carrier extraction from the excited nanopillars is the formation of ultra-shallow radial p-n junctions that provide both short carrier collection lengths, and also ensure that the volume of the photo inactive emitter is as small as possible. In the current manuscript, both finite-difference time-domain simulations and three-dimensional device simulations are used to examine carrier extraction from nanopillar arrays that are geometrically optimized in terms of array periodicity and nanopillar diameter to provide maximum absorption of the solar spectrum. The discussion is limited to nanopillars with heights of 2 mu m in line with what is currently available with leading top-down fabrication technologies for the formation of nanopillars with smooth sidewalls and radial uniformity. The examination considers both radial and axial homojunctions for various junction depths. It is shown that, contrary to common practice and knowledge, the ultra-shallow junctions are detrimental to the photovoltaic performance of such systems while the radial configuration with a junction depth of similar to 50 nm is the most efficient. Furthermore, the open circuit voltage is highest for axial junctions with a junction depth of 100 nm. Also, it is shown that the axial junction is preferable in the low dopant concentration regime and that overall, the axial junction is less sensitive to variations in junction depth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据