4.8 Article

Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics

期刊

NANOSCALE
卷 9, 期 48, 页码 19374-19383

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr07895a

关键词

-

资金

  1. National Key R&D Program of China [2017YFA0305500, 2016YFB0401701]
  2. National Natural Science Foundation of China [11604152, 61604074]
  3. Natural Science Foundation of Jiangsu Province [BK20160815, BK20160827, BK20140769]
  4. National Science Foundation for Distinguished Young Scholars of China [61725402]
  5. Fundamental Research Funds for the Central Universities [30917011202, 30915012205, 30916015106]
  6. PAPD of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

While many sophisticated geometries of metallic nanoparticles have been explored for plasmon resonance in the visible light waveband, similar structures for infrared plasmonics have seldom been studied. Herein, for the first time, we report branched colloidal Sn-doped In2O3 (ITO) NCs prepared through heating metal organic precursors in a high boiling solvent and surfactants via a simple one-pot method and their interesting anisotropic infrared plasmonics. Shaped ITO NCs were anisotropically grown into triangles, tripods, and tetrapods from spherical particles by tuning the composition of the surfactants. Interestingly, such anisotropic ITO NCs exhibit shape-dependent localized surface plasmon resonances. A new peak emerged at a low energy band, and the peak intensity increases when the particles become more anisotropic. Meanwhile, a redshift of this newly emerging peak and a blueshift of the original peak can also be observed. The proposed overlapping spheroid model successfully explained those features and the calculated extinction spectra matched excellently with the experimental data. Moreover, the origins of those peaks were also revealed and assigned to in-plane longitudinal and out-of-plane transverse modes, respectively. This work may help design more sophisticated structures for infrared plasmonics and broaden its applications in various areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据