4.8 Article

Real-time in situ analysis of biocorona formation and evolution on silica nanoparticles in defined and complex biological environments

期刊

NANOSCALE
卷 9, 期 10, 页码 3620-3628

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6nr06399c

关键词

-

资金

  1. Chalmers Area of Advance in Nanoscience and Nanotechnology
  2. NanoLund
  3. Swedish Foundation for Strategic Environmental Research (MISTRA Environmental Nanosafety)
  4. Swedish Research Council [2014-4956]

向作者/读者索取更多资源

Biomolecules such as proteins immediately adsorb on the surface of nanoparticles upon their exposure to a biological environment. The formed adlayer is commonly referred to as biomolecule corona (biocorona) and defines the biological activity and toxicity of the nanoparticle. Therefore, it is essential to understand in detail the biocorona formation process, and how it is governed by parameters like composition of the biological environment, and nanoparticle size, shape and faceting. Here we present a detailed equilibrium and real time in situ study of biocorona formation at SiO2-nanoparticle surfaces upon exposure to defined (BSA, IgG) and complex (bovine serum, IgG depleted bovine serum) biological samples. We use both nanofabricated surface-associated Au core-SiO2 shell nanoparticles (faceted, d = 92-167 nm) with integrated nanoplasmonic sensing function and dispersed SiO2 nanoparticles (using DLS and SDS-PAGE). The results show that preadsorbed BSA or IgG are exchanged for other proteins when exposed to bovine serum. In addition, the results show that IgG forms a biocorona with different properties at curved (edge) and flat (facet) SiO2-nanoparticle surfaces. Our study paves the way for further real time in situ investigations of the biocorona formation and evolution kinetics, as well as the role of molecular orientation in biocorona formation, on nanoparticles with surface faceting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据