4.8 Article

Distance dependent photoacoustics revealed through DNA nanostructures

期刊

NANOSCALE
卷 9, 期 42, 页码 16193-16199

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nr05353c

关键词

-

资金

  1. Cancer Research UK Cambridge Centre Pump Prime Research Grant
  2. EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester [C197/A16465]
  3. CRUK [C14303/A17197, C47594/A16267]
  4. EU-FP7-agreement [FP7-PEOPLE-2013-CIG-630729]
  5. ERASMUS
  6. UK EPSRC through NanoDTC [EP/G037221/1]
  7. EPSRC [EP/J017639/1]
  8. Herchel Smith postdoctoral fellowship
  9. ARAID foundation
  10. Cancer Research UK [21142, 16465, 16267] Funding Source: researchfish
  11. Engineering and Physical Sciences Research Council [EP/J017639/1] Funding Source: researchfish
  12. EPSRC [EP/J017639/1] Funding Source: UKRI

向作者/读者索取更多资源

Molecular rulers that rely on the Forster resonance energy transfer (FRET) mechanism are widely used to investigate dynamic molecular processes that occur on the nanometer scale. However, the capabilities of these fluorescence molecular rulers are fundamentally limited to shallow imaging depths by light scattering in biological samples. Photoacoustic tomography (PAT) has recently emerged as a high resolution modality for in vivo imaging, coupling optical excitation with ultrasound detection. In this paper, we report the capability of PAT to probe distance-dependent FRET at centimeter depths. Using DNA nanotechnology we created several nanostructures with precisely positioned fluorophore-quencher pairs over a range of nanoscale separation distances. PAT of the DNA nanostructures showed distance-dependent photoacoustic signal enhancement and demonstrated the ability of PAT to reveal the FRET process deep within tissue mimicking phantoms. Further, we experimentally validated these DNA nanostructures as a novel and biocompatible strategy to augment the intrinsic photoacoustic signal generation capabilities of small molecule fluorescent dyes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据