4.6 Article

Self-assembled cationic amphiphiles as antimicrobial peptides mimics: Role of hydrophobicity, linkage type, and assembly state

期刊

出版社

ELSEVIER
DOI: 10.1016/j.nano.2016.07.018

关键词

Antimicrobial peptides; Synthetic mimics; Self-assembly; Membrane disruption; Antimicrobial activity

资金

  1. National Institutes of Health (NIH) [1S10OD012346-01A1]

向作者/读者索取更多资源

Inspired by high promise using naturally occurring antimicrobial peptides (AMPs) to treat infections caused by antimicrobial-resistant bacteria, cationic amphiphiles (CAms) were strategically designed as synthetic mimics to overcome associated limitations, including high manufacture cost and low metabolic stability. CAms with facially amphiphilic conformation were expected to demonstrate membrane-lytic properties and thus reduce tendency of resistance development. By systematically tuning the hydrophobicity, CAms with optimized compositions exhibited potent broad-spectrum antimicrobial activity (with minimum inhibitory concentrations in low mu g/mL range) as well as negligible hemolytic activity. Electron microscope images revealed the morphological and ultrastructure changes of bacterial membranes induced by CAm treatment and validated their membrane-disrupting mechanism. Additionally, an all-atom molecular dynamics simulation was employed to understand the CAm-membrane interaction on molecular level. This study shows that these CAms can serve as viable scaffolds for designing next generation of AMP mimics as antimicrobial alternatives to combat drug-resistant pathogens. (C) 2016 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据