4.8 Review

3D printed functional nanomaterials for electrochemical energy storage

期刊

NANO TODAY
卷 15, 期 -, 页码 107-120

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nantod.2017.06.007

关键词

3D printing; Energy storage; Supercapacitors; Lithium-ion batteries

资金

  1. U.S. Department of Energy through LDRD [DE-AC52-07NA27344, 16-ERD-051]
  2. University of California, Santa Cruz [LLNL-JRNL-732865]

向作者/读者索取更多资源

Electrochemical energy storage (EES) devices, such as lithium-ion batteries and supercapacitors, are emerging as primary power sources for global efforts to shift energy dependence from limited fossil fuels towards sustainable and renewable resources. These EES devices, while renowned for their high energy or power densities, portability, and long cycle life, are still facing significant performance hindrance due to manufacturing limitations. One major obstacle is the ability to engineer macroscopic components with designed and highly resolved nanostructures with optimal performance, via controllable and scalable manufacturing techniques. 3D printing covers several additive manufacturing methods that enable well-controlled creation of functional nanomaterials with three-dimensional architectures, representing a promising approach for fabrication of next-generation EES devices with high performance. In this review, we summarize recent progress in fabricating 3D functional electrodes utilizing 3D printing-based methodologies for EES devices. Specifically, laser-, lithography-, electrodeposition-, and extrusion-based 3D printing techniques are described and exemplified with examples from the literatures. Current challenges and future opportunities for functional materials fabrication via 3D printing techniques are also discussed. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据