4.8 Article

Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles

期刊

NANO RESEARCH
卷 10, 期 6, 页码 2181-2191

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-017-1514-6

关键词

carbon-dioxide electroreduction; Pd nanoparticles; active phase; selectivity fluctuation

资金

  1. National Basic Research Program of China [2016YFB0600901, 2013CB733501]
  2. National Natural Science Foundation of China [21136001, 21573222, 91545202, 91334103]
  3. Chinese Academy of Sciences [XDB17020200]
  4. CAS Youth Innovation Promotion Association

向作者/读者索取更多资源

Active-phase engineering is regularly utilized to tune the selectivity of metal nanoparticles (NPs) in heterogeneous catalysis. However, the lack of understanding of the active phase in electrocatalysis has hampered the development of efficient catalysts for CO2 electroreduction. Herein, we report the systematic engineering of active phases of Pd NPs, which are exploited to select reaction pathways for CO2 electroreduction. In situ X-ray absorption spectroscopy, in situ attenuated total reflection-infrared spectroscopy, and density functional theory calculations suggest that the formation of a hydrogen-adsorbed Pd surface on a mixture of the a-and a-phases of a palladium-hydride core (alpha+beta PdHx@PdHx) above -0.2 V (vs. a reversible hydrogen electrode) facilitates formate production via the HCOO* intermediate, whereas the formation of a metallic Pd surface on the a-phase Pd hydride core (beta PdHx@Pd) below -0.5 V promotes CO production via the COOH* intermediate. The main product, which is either formate or CO, can be selectively produced with high Faradaic efficiencies (> 90%) and mass activities in the potential window of 0.05 to -0.9 V with scalable application demonstration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据