4.8 Article

Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life

期刊

NANO RESEARCH
卷 10, 期 12, 页码 4398-4414

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-017-1756-3

关键词

sodium-ion batteries (SIBs); lithium-ion batteries (LIBs); SnO2; three-dimensional (3D) graphene; hybrid materials

向作者/读者索取更多资源

SnO2 is a promising material for both Li-ion and Na-ion batteries owing to its high theoretical capacities. Unfortunately, the electrochemical performance of SnO2 is unsatisfactory because of the large volume change that occurs during cycling, low electronic conductivity of inactive oxide matrix, and poor kinetics, which are particularly severe in Na-ion batteries. Herein, ultra-fine SnO2 nanocrystals anchored on a unique three-dimensional (3D) porous reduced graphene oxide (rGO) matrix are described as promising bifunctional electrodes for Li-ion and Na-ion batteries with excellent rate capability and long cycle life. Ultra-fine SnO2 nanocrystals of size similar to 6 nm are well-coordinated to the graphene sheets that comprise the 3D macro-porous structure. Notably, superior rate capability was obtained up to 3 C (1/n C is a measure of the rate that allows the cell to be charged/discharged in n h) for both batteries. In situ X-ray diffractometry measurements during lithiation (or sodiation) and delithiation (or desodiation) were combined with various electrochemical techniques to reveal the real-time phase evolution. This critical information was linked with the internal resistance, ion diffusivity ( and ), and the unique structure of the composite electrode materials to explain their excellent electrochemical performance. The improved capacity and superior rate capabilities demonstrated in this work can be ascribed to the enhanced transport kinetics of both electrons and ions within the electrode structure because of the well-interconnected, 3D macro-porous rGO matrix. The porous rGO matrix appears to play a more important role in sodium-ion batteries (SIBs), where the larger mass/radius of Na-ions are marked concerns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据