4.8 Article

A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials

期刊

NANO RESEARCH
卷 10, 期 5, 页码 1749-1755

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-017-1447-0

关键词

Au nanoparticles; Rh nanoparticles; Si nanowires; electrocatalysis; hydrogen evolution reaction

资金

  1. National Natural Science Foundation of China [91433111]
  2. Qing Lan Project
  3. Collaborative Innovation Center of Suzhou Nano Science Technology
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Hydrogen evolution by electrocatalysis is an attractive method of supplying clean energy. However, it is challenging to find cheap and efficient alternatives to rare and expensive platinum based catalysts. Pt provides the best hydrogen evolution performance, because it optimally balances the free energies of adsorption and desorption. Appropriate control of these quantities is essential for producing an efficient electrocatalyst. We demonstrate, based on first principles calculations, a stepwise designed Rh-Au-Si ternary catalyst, in which adsorption (the Volmer reaction) and desorption (the Heyrovsky reaction) take place on Rh and Si surfaces, respectively. The intermediate Au surface plays a vital role by promoting hydrogen diffusion from the Rh to the Si surface. Theoretical predictions have been explored extensively and verified by experimental observations. The optimized catalyst (Rh-Au-SiNW-2) has a composition of 2.2:28.5:69.3 (Rh: Au: Si mass ratio) and exhibits a Tafel slope of 24.0 mV.dec(-1). Its electrocatalytic activity surpasses that of a commercial 40 wt.% Pt/C catalyst at overpotentials above 0.19 V by exhibiting a current density of greater than 108 mA.cm(-2). At 0.3 V overpotential, the turnover frequency of Rh-Au-SiNW-2 is 10.8 times greater than that of 40 wt.% Pt/C. These properties may open new directions in the stepwise design of highly efficient catalysts for the hydrogen evolution reaction (HER).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据