4.8 Article

Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip

期刊

NANO LETTERS
卷 17, 期 12, 页码 7394-7400

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b03220

关键词

Silicon quantum photonics; hybrid integration; quantum dots; single photons

资金

  1. Laboratory for Telecommunication Sciences
  2. Center for Distributed Quantum Information at the University of Maryland
  3. Army Research Laboratory
  4. Physics Frontier Center at the Joint Quantum Institute
  5. Direct For Mathematical & Physical Scien
  6. Division Of Physics [1430094] Funding Source: National Science Foundation

向作者/读者索取更多资源

Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据