4.8 Article

The Nature of Electron Mobility in Hybrid Perovskite CH3NH3PbI3

期刊

NANO LETTERS
卷 17, 期 6, 页码 3646-3654

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b00832

关键词

Electron mobility; random walk; time-dependent tight-binding simulations; perovskite solar cells

资金

  1. Office of Science of the U.S. Department of Energy [DE-SC0004993]

向作者/读者索取更多资源

CH3NH3PbI3 is one of the most promising candidates for cheap and high -efficiency solar cells. One of its unique features is the long carrier diffusion length (>100 mu m), but its carrier mobility is rather modest. The nature of the Mobility is unclear. Here, using nonadiabatic wave function dynamics simulations, we show that the random rotations of the CH3NH3 cations play an important role in the carrier mobility. Our previous work showed that the electron and hole wave functions were localized and spatially separated due to the random orientations of the CH3NH3 cations in the tetragonal phase. We find that the localized carriers are able to conduct random walks due to the electrostatic potential fluctuation caused by the CH3NH3 random rotations. The calculated electron mobilities are in the experimentally measured range. We thus conclude that the carrier mobility of CH3NH3PbI3 is likely driven by the dynamic disorder that causes the fluctuation of the electrostatic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据