4.8 Article

Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes

期刊

NANO LETTERS
卷 17, 期 11, 页码 6808-6815

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b03071

关键词

Sodium metal anode; graphene film; tunable thickness; stable cycling

资金

  1. Young Investigator Program - U.S. Air Force Office of Scientific Research [FA9550-17-1-0184]
  2. Thayer School of Engineering, Dartmouth College

向作者/读者索取更多资源

Sodium (Na) metal has shown great promise as an anode material for the next-generation energy storage systems because of its high theoretical capacity, low cost, and high earth abundance. However, the extremely high reactivity of Na metal with organic electrolyte leads to the formation of unstable solid electrolyte interphase (SEI) and growth of Na dendrites upon repeated electrochemical stripping/plating, causing poor cycling performance, and serious safety issues. Herein, we present highly stable and dendrite-free Na metal anodes over a wide current range and long-term cycling via directly applying free-standing graphene films with tunable thickness on Na metal surface. We systematically investigate the dependence of Na anode stability on the thickness of the graphene film at different current densities and capacities. Our findings reveal that only a few nanometer (similar to 2-3 nm) differences in the graphene thickness can have decisive influence on the stability and rate capability of Na anodes. To achieve the optimal performance, the thickness of the graphene film covered on Na surface needs to be meticulously selected based on the applied current density. We demonstrate that with a multilayer graphene film (similar to 5 nm in thickness) as a protective layer, stable Na cycling behavior was first achieved in carbonate electrolyte without any additives over 100 cycles at a current density as high as 2 mA/cm(2) with a high capacity of 3 mAh/cm(2). We believe our work could be a viable route toward high-energy Na battery systems, and can provide valuable insights into the lithium batteries as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据