4.8 Article

Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes

期刊

NANO LETTERS
卷 17, 期 9, 页码 5726-5733

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.7b02694

关键词

Copper sulfides; CuS; electrochemistry kinetics; lithium ion battery; in situ TEM

资金

  1. Center for Functional Nanomaterials, Brookhaven National Laboratory - U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-SC-00112704]
  2. Center for Electrochemical Energy Science (CEES), an Energy Frontier Research Center - U.S. DOE, Office of Science, Basic Energy Sciences [DEAC02-06CH11357]
  3. U.S. DOE Office of Energy Efficiency and Renewable Energy [DE-SC0012704]
  4. Office of Science of the U.S. DOE [DE-AC02-05CH11231]
  5. NUANCE Center from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF ECCS-1542205]
  6. MRSEC program at the Materials Research Center [NSF DMR-1121262]
  7. International Institute for Nanotechnology (IIN)
  8. Keck Foundation
  9. State of Illinois through the IIN

向作者/读者索取更多资源

Two-dimensional (2D) transition metal chalcogenides have been widely studied and utilized as electrode materials for lithium ion batteries due to their unique layered structures to accommodate reversible lithium insertion. Real-time observation and mechanistic understanding of the phase transformations during lithiation of these materials are critically important for improving battery performance by controlling structures and reaction pathways. Here, we use in situ transmission electron microscopy methods to study the structural, morphological, and chemical evolutions in individual copper sulfide (CuS) nanoflakes during lithiation. We report a highly kinetically driven phase transformation in which lithium ions rapidly intercalate into the 2D van der Waals-stacked interlayers in the initial stage, and further lithiation induces the Cu extrusion via a displacement reaction mechanism that is different from the typical conversion reactions. Density functional theory calculations have confirmed both the thermodynamically favored and the kinetically driven reaction pathways. Our findings elucidate the reaction pathways of the Li/CuS system under nonequilibrium conditions and provide valuable insight into the atomistic lithiation mechanisms of transition metal sulfides in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据