4.7 Article

Mass transfer and disc formation in AGB binary systems

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx680

关键词

methods: numerical; stars: AGB and post-AGB; binaries: close; stars: mass-loss; planetary nebulae: general

向作者/读者索取更多资源

We investigate mass transfer and the formation of discs in binary systems using a combination of numerical simulations and theory. We consider six models distinguished by binary separation, secondary mass and outflow mechanism. Each system consists of an asymptotic giant branch (AGB) star and an accreting secondary. The AGB star loses its mass via a wind. In one of our six models, the AGB star incurs a short period of outburst. In all cases, the secondary accretes part of the ejected mass and also influences the mass-loss rate of the AGB star. The ejected mass may remain gravitationally bound to the binary system and form a circumbinary disc, or contribute to an accretion disc around the secondary. In other cases, the ejecta will escape the binary system. The accretion rate on to the secondary changes non-linearly with binary separation. In our closest binary simulations, our models exemplify the wind Roche lobe overflow while in our wide binary cases, the mass transfer exhibits Bondi-Hoyle accretion. The morphologies of the outflows in the binary systems are varied. The variety may provide clues to how the late AGB phase influences planetary nebula shaping. We employ the adaptive-mesh-refinement code ASTROBEAR for our simulations and include ray tracing, radiation transfer, cooling and dust formation. To attain the highest computational efficiency and the most stable results, all simulations are run in the corotating frame.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据