4.7 Article

ALMA spectral survey of Supernova 1987A-molecular inventory, chemistry, dynamics and explosive nucleosynthesis

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stx830

关键词

supernovae: individual: Supernova 1987A; ISM: abundances; ISM: molecules; ISM: supernova remnants; radio lines: ISM

资金

  1. UK STFC [ST/J001511/1]
  2. STFC Ernest Rutherford fellowship [ST/L003597/1]
  3. European Research Council (ERC) Advanced Grant [SNDUST 694520]
  4. European Research Council (ERC) [ERC-2014-CoG-647939]
  5. NASA [NNX14AH34G]
  6. STFC [ST/L003597/1, ST/M001334/1, ST/R001049/1] Funding Source: UKRI

向作者/读者索取更多资源

We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the Atacama Large Millimeter/submillimeter Array (ALMA) 210-300 and 340360 GHz spectra, we detected cold (20-170 K) CO, (SiO)-Si-28, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J = 6-5 and 5-4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of theCOand SiO line profiles is consistent with hydrodynamic simulations, which showthat Rayleigh-Taylor instabilities causemixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of (SiO)-Si-28/(SiO)-Si-29> 13, (SiO)-Si-28/(SiO)-Si-30> 14 and (CO)-C-12/(CO)-C-13 > 21, with the most likely limits of (SiO)-Si-28/(SiO)-Si-29 > 128, (SiO)-Si-28/(SiO)-Si-30 > 189. Low Si-29 and Si-30 abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (similar to 5 x 10(-6)M(circle dot)) and small SiS mass (< 6 x 10-5M(circle dot)) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon- and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive nucleosynthesis in supernovae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据