4.6 Article

Porous, One dimensional and High Aspect Ratio Mn3O4 Nanofibers: Fabrication and Optimization for Enhanced Supercapacitive Properties

期刊

ELECTROCHIMICA ACTA
卷 174, 期 -, 页码 992-1001

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.06.073

关键词

Supercapacitor; Electrospinning; Nanofiber; Spinel-Mn3O4; Impedance

资金

  1. Department of Atomic Energy (DAB), BRNS, Government of India [2012/34/44/BRNS]

向作者/读者索取更多资源

Morphology of Mn3O4 is tuned to the nanoparticles / nanorods / nanofiber if ratio of metal precursor to polymer is varied from 0.33:1 to 2:1 in electrospinning solution. The best optimized nanofiber of Mn3O4 in terms of surface area, pore size and its distribution, and aspect ratio are obtained when equal amount of metal precursor and polymer (MN1:1) in electrospinning solution is taken, and sintered precisely at 1 degrees C min(-1). The structural, morphological and thermal characterizations are carried out by XRD, FESEM, TEM, SAED, BET surface area and TG analysis. Further, these morphologies of Mn3O4 are subjected to the electrochemical characterization for evaluating the supercapacitive performance. The value of specific capacitance of MN1:1 is found to be 210 (+/-5) F g(-1) and 155 (+/-5) F g(-1) at 0.3 A g(-1) in 1 M KCl and 1 M Na2SO4, respectively. Improved supercapacitive performance of MN1:1 in both electrolytes is attributed to the unique nanofibric morphology where small nanoparticles are interconnected with good amount of open pores and forms a porous, one dimensional and high aspect ratio nanofibers. Electrochemical impedance spectroscopy (EIS) shows very low charge transfer resistance in MN1 :1 favorable for fast and facile transportation of electrolyte ions to electrode and vice versa. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据