4.6 Article

Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping

期刊

ELECTROCHIMICA ACTA
卷 153, 期 -, 页码 140-148

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2014.11.199

关键词

Lithium-selenium batteries; Mesoporous carbon microsphere; Electrochemical performance; Pore size effect; Nitrogen-doping effect

资金

  1. MOST [2014CB239702]
  2. National Science Foundation of China [51302083, 51172071, 51272077]
  3. Fundamental Research Funds for the Central Universities
  4. Program of Shanghai Subject Chief Scientist [13XD1424900]

向作者/读者索取更多资源

Mesoporous carbon microspheres (MCMs) with tunable pore sizes have been prepared via a high-throughput spray drying-assisted hard template method and used as the hosts to load selenium (Se) for lithium-selenium (Li-Se) batteries. The pore size control of the MCMs (3.8, 5, 6.5, 9.5 nm) was achieved by in-situ polymerized colloid silica templates with different sizes, thus prompting us to focus on tracing the effects of mesopore size on electrochemical performance of MCMs/Se cathodes. The results reveal that relative higher capacity and better cycling performance are presented in MCMs with smaller pores size due to the more effective confinement effect. At an optimal pore size of 3.8 nm, the MCMs/Se with 50% Se loading delivers an initial capacity of 513mAhg(-1) and capacity retention of 300mAhg(-1) after 100 cycles at 0.5 C. Furthermore, it is concluded that nitrogen doping could assist MCMs to retard the diffusion of polyselenide species possibly via an enhanced surface adsorption. The composites thus increase the reversible capacity by 30% after 100 cycles compared with the nitrogen-free composite. These results indicate that controlling pore structure and surface chemistry are good strategies to optimize the electrochemical performance of C/Se based cathodes for Li-Se batteries. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据