4.5 Article

The impact of keels and tails on turtle swimming performance and their potential as models for biomimetic design

期刊

BIOINSPIRATION & BIOMIMETICS
卷 14, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-3190/aae906

关键词

swimming; locomotion; performance; keel; tail; stability; turning

资金

  1. Clemson University [479]

向作者/读者索取更多资源

Stability and turning performance are two key metrics of locomotor performance in animals, and performance in both of these metrics can be improved through a variety of morphological structures. Aquatic vehicles are often designed with keels and rudders to improve their stability and turning performance, but how keels and rudders function in rigid-bodied animals is less understood. Aquatic turtles are a lineage of rigid-bodied animals that have the potential to function similarly to engineered vehicles, and also might make use of keels and rudders to improve their stability and turning performance. To test these possibilities, we trained turtles to follow a mechanically controlled prey stimulus under three sets of conditions: with no structural modifications, with different sized and shaped keels, and with restricted tail use. We predicted that keels in turtles would function similarly to those in aquatic vehicles to reduce oscillations, and that turtles would use the tail like a rudder to reduce oscillations and improve turning performance. We found that the keel designs we tested did not reduce oscillations in turtles, but that the tail was used similarly to a rudder, with benefits to both the magnitude of oscillations they experienced and turning performance. These data show how variation in the accessory structures of rigid-bodied animals can impact swimming performance, and suggest that such variation among turtles could serve as a biomimetic model in designing aquatic vehicles that are stable as well as maneuverable and agile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据