4.6 Article

Self-Organized TiO2-MnO2 Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene

期刊

MOLECULES
卷 22, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/molecules22040564

关键词

TiO2-MnO2 nanotubes; visible light induced photocatalysis; alloys; toluene degradation; anodization

资金

  1. Polish National Science Center [NCN2014/15/B/ST5/00098]

向作者/读者索取更多资源

Vertically oriented, self-organized TiO2-MnO2 nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (lambda(max) = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 mu m and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO2-MnO2 NTs under visible light was presented, pointing out the importance of MnO2 species for the generation of e(-) and h(+).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据