4.6 Article

Adsorption Properties of Nano-MnO2-Biochar Composites for Copper in Aqueous Solution

期刊

MOLECULES
卷 22, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/molecules22010173

关键词

biochar; nano-MnO2-biochar composites; adsorption; copper

资金

  1. National Science Foundation of Tianjin [15JCZDJC33900]

向作者/读者索取更多资源

There is a continuing need to develop effective materials for the environmental remediation of copper-contaminated sites. Nano-MnO2-biochar composites (NMBCs) were successfully synthesized through the reduction of potassium permanganate by ethanol in a biochar suspension. The physicochemical properties and morphology of NMBCs were examined, and the Cu(II) adsorption properties of this material were determined using various adsorption isotherms and kinetic models. The adsorption capacity of NMBCs for Cu(II), which was enhanced by increasing the pH from 3 to 6, was much larger than that of biochar or nano-MnO2. The maximum adsorption capacity of NMBCs for Cu(II) was 142.02 mg/g, which was considerably greater than the maximum adsorption capacities of biochar (26.88 mg/g) and nano-MnO2 (93.91 mg/g). The sorption process for Cu(II) on NMBCs fitted very well to a pseudo-second-order model (R-2 > 0.99). Moreover, this process was endothermic, spontaneous, and hardly influenced by ionic strength. The mechanism of Cu(II) adsorption on NMBCs mainly involves the formation of complexes between Cu(II) and O-containing groups (e.g., COO-Cu and Mn-O-Cu). Thus, NMBCs may serve as effective adsorbents for various environmental applications, such as wastewater treatment or the remediation of copper-contaminated soils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据