4.6 Article

Ameliorative Effects and Possible Molecular Mechanism of Action of Black Ginseng (Panax ginseng) on Acetaminophen-Mediated Liver Injury

期刊

MOLECULES
卷 22, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/molecules22040664

关键词

black ginseng; APAP; liver injury; apoptosis; oxidative stress

资金

  1. National Natural Science Foundation of China [31201331]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars (Jilin Province)
  3. Jilin Science & Technology Development Plan [20160209008YY]
  4. Program for the Young Top-notch and Innovative Talents of Jilin Agricultural University

向作者/读者索取更多资源

Background: Frequent overdosing of acetaminophen (APAP) has become the major cause of acute liver injury (ALI). The present study aimed to evaluate the potential hepatoprotective effects of black ginseng (BG) on APAP-induced mice liver injuries and the underlying mechanisms of action were further investigated for the first time. Methods: Mice were treated with BG (300, 600 mg/kg) by oral gavage once a day for seven days. On the 7th day, all mice were treated with 250 mg/kg APAP which caused severe liver injury after 24 h and hepatotoxicity was assessed. Results: Our results showed that pretreatment with BG significantly decreased the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST) compared with the APAP group. Meanwhile, hepatic antioxidant including glutathione (GSH) was elevated compared with the APAP group. In contrast, a significant decrease of the levels of the lipid peroxidation product malondialdehyde (MDA) was observed in the BG-treated groups compared with the APAP group. These effects were associated with significant increases of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) levels in liver tissues. Moreover, BG supplementation suppressed activation of apoptotic pathways through increasing Bcl-2 and decreasing Bax protein expression levels according to western blotting analysis. Histopathological examination revealed that BG pretreatment significantly inhibited APAP-induced necrosis and inflammatory infiltration in liver tissues. Biological indicators of nitrative stress like 3-nitrotyrosine (3-NT) were also inhibited after pretreatment with BG, compared with the APAP group. Conclusions: The results clearly suggest that the underlying molecular mechanisms of action of BG-mediated alleviation of APAP-induced hepatotoxicity may involve its anti-oxidant, anti-apoptotic, anti-inflammatory and anti-nitrative effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据