4.6 Review

Fluorescence Resonance Energy Transfer Systems in Supramolecular Macrocyclic Chemistry

期刊

MOLECULES
卷 22, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules22101640

关键词

calixarene; cucurbituril; cyclodextrin; host-guest chemistry; pillararene; supramolecular chemistry

资金

  1. National Natural Science Foundation of China [51673084]
  2. JLU Cultivation Fund for the National Science Fund for Distinguished Young Scholars
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

The fabrication of smart materials is gradually becoming a research focus in nanotechnology and materials science. An important criterion of smart materials is the capacity of stimuli-responsiveness, while another lies in selective recognition. Accordingly, supramolecular host-guest chemistry has proven a promising support for building intelligent, responsive systems; hence, synthetic macrocyclic hosts, such as calixarenes, cucurbiturils, cyclodextrins, and pillararenes, have been used as ideal building blocks. Meanwhile, manipulating and harnessing light artificially is always an intensive attempt for scientists in order to meet the urgent demands of technological developments. Fluorescence resonance energy transfer (FRET), known as a well-studied luminescent activity and also a powerful tool in spectroscopic area, has been investigated from various facets, of which the application range has been broadly expanded. In this review, the innovative collaboration between FRET and supramolecular macrocyclic chemistry will be presented and depicted with typical examples. Facilitated by the dynamic features of supramolecular macrocyclic motifs, a large variety of FRET systems have been designed and organized, resulting in promising optical materials with potential for applications in protein assembly, enzyme assays, diagnosis, drug delivery monitoring, sensing, photosynthesis mimicking and chemical encryption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据