4.6 Article

Thermally Controlled V2O5 Nanoparticles as Cathode Materials for Lithium-Ion Batteries with Enhanced Rate Capability

期刊

ELECTROCHIMICA ACTA
卷 164, 期 -, 页码 227-234

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2015.02.208

关键词

Vanadium pentoxide; Citric acid; Amorphous layers; Cathode; Lithium-ion battery

资金

  1. Ministry of Education, Science, and Technology (MEST)
  2. National Research Foundation of Korea (NRF) through the Basic Science Research Program [2011-0023512]
  3. Human Resource Training Project for Regional Innovation [2012H1B8A2025809]
  4. National Research Foundation of Korea [2012H1B8A2025809, 2011-0023512] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Vanadium pentoxide (V2O5) is an attractive cathode material for lithium-ion batteries (LIBs) because of its low cost, high abundance, and relatively high theoretical capacity (294 mA h g (1) with two lithium insertions/extractions per unit formula at 2.0-4.0 V). However, practical applications of V2O5 are hampered by its poor structural stability, low electrical conductivity, and slow ion diffusion kinetics, resulting in poor long-term cycling stability and rate performance. In this study, V2O5 nanoparticles are synthesized by a fast sol-gel method with citric acid (C6H8O7) at 400, 500, 600, and 700 degrees C. The thickness of the amorphous layers on the surface of the V2O5 nanoparticles is controlled from approximately 4-5 to 1-2 nm by adjusting the calcination temperature. The V2O5 nanoparticles synthesized at 600 degrees C show better electrochemical performances than the other samples. They exhibit a high initial discharge capacity of 276 mA h g (1) between 2.1 and 4.0 V at a rate of 1 C, and good capacity retention of 83% after 50 cycles. Even at 10 C rate, a discharge capacity of about 168 mA h g (1) is obtained after 100 cycles. The excellent rate capability and cycling stability are also achieved at current densities of 0.5-20 C. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据